THE TEMPERATURE FIELD AND THE THERMOELASTIC STATE IN A PLATE CONTAINING A THIN-WALLED ELASTIC INCLUSION*

D. V. GRILITSKII, M. S. DRAGAN and V. K. OPANASOVICH

A plane problem of heat conductivity and thermoelasticity is considered for a plate containing a rectilinear, thin-walled elastic inclusion of finite length. The problem is reduced to a system of two singular, integrodifferential Prandtl-type equations, which are solved using the method of orthogonal polynomials. A numerical analysis of the solution is given.

1. Formulation of the problem. We consider an isotropic plate containing a foreign, thin-walled rectilinear inclusion of length $2 a$, thickness $2 h$, acted upon by the thermal parameters only (heat flux at infinity, concentrated heat sources). It is assumed that the side surfaces of the plate are thermally insulated, and that perfect thermal contact and force coupling exist between the edges of the inclusion and the surrounding material. We require to determine and study the effect of the inclusion on the magnitude and character of the distribution of the temperature field and thermoelastic state in the plate.

To solve the problem, we shall employ a Cartesian $\quad x 0 y$-coordinate system the axes of which are directed along the axes of the inclusion (Fig.l). We denote the length of the inclusion by L, and the quantities referring to the inclusion

Fig. 1 by a subscript zero. The plus and minus indices denote the boundary values of the functions at the upper and lower edges of the inclusion, respectively.

The conditions of the force coupling and thermal contact between the inclusion and the surrounding material have the form

$$
\begin{align*}
& \left(\sigma_{y}-i \tau_{x y}\right)_{0} \pm=\left(\sigma_{v}-i \tau_{x y}\right)^{ \pm}, \quad(u+i v)_{0^{ \pm}}=(u+i v)^{ \pm} \quad \text { on } L \tag{1.1}\\
& (T+i \eta)_{0}^{ \pm}=(T+i \eta)^{ \pm}, \quad k_{0} \frac{\partial}{\partial y}(T+i \eta)_{0^{ \pm}}=k \frac{\partial}{\partial y}(T+i \eta)^{ \pm} \quad \text { on } L \tag{1.2}
\end{align*}
$$

where η is an auxilliary harmonic function $/ l /$ and k_{0}, k are the heat conductivity coefficients of the inclusion and the plate materials, respectively.
2. Problem of heat conduction. According to $/ 1 /$, the temperature field in a homogeneous isotropic plate can be found using the formula

$$
\begin{aligned}
& F_{1}(z)+Q_{1}(\bar{z})=T+i \eta, \quad F(z)+Q(\bar{z})=\frac{\partial}{\partial x}(T+i \eta), \quad F(z)-Q(\bar{z})=-i \frac{\partial}{\partial y}(T+i \eta) \\
& \left(F(z)=F_{1}^{\prime}(z), Q(z)=Q_{1}^{\prime}(z)\right)
\end{aligned}
$$

where $F_{1}(z)$ and $Q_{1}(z)$ are piecewise holomorphic functions. Since we consider a thin-walled inclusion, we can neglect the quantities which are very small compared with h, and use (2.1) to write

$$
\begin{array}{ll}
\frac{\partial}{\partial x}(T+i \eta)_{0}^{+}+\frac{\partial}{\partial x}(T+i \eta)_{0}^{-}=2 g(x), \quad x \in L, \quad \frac{\partial}{\partial x}(T+i \eta)_{0}^{+}-\frac{\partial}{\partial x}(T+i \eta)_{0}^{-}=2 h \rho^{\prime}(x), \quad x \in L \tag{2.2}\\
\frac{\partial}{\partial y}(T+i \eta)_{0}^{+}+\frac{\partial}{\partial y}(T+i \eta)_{0}^{-}=2 \rho(x), \quad x \in L, \quad \frac{\partial}{\partial y}(T+i \eta)_{0}^{+}-\frac{\partial}{\partial y}(T+i \eta)_{0}^{-}=-2 h g^{\prime}(x), \quad x \in L
\end{array}
$$

where $g(x)$ and $\rho(x)$ are functions to be determined.
Satisfying the conditions (1.2) with help of the relations (2.1) and taking (2.2) into account, we obtain the following boundary value problems for determining the piecewise holomorphic functions $F(z)$ and $Q(z)$ with the line of discontinuity L :
$[F(x)+Q(x)]^{+}+[F(x)+Q(x)]^{-}=2 g(x), x \in L, \quad[F(x)-Q(x)]^{+}+[F(x)-Q(x)]^{-}=-2 i \frac{k_{0}}{k} \rho(x), x \in L \quad$ (2.3)
$[F(x)+Q(x)]^{+}-[F(x)+Q(x)]^{-}=2 i h \frac{k_{0}}{k}\left[g^{\prime}(x)-g_{1}(x)\right], \quad x \in L$
$[F(x)-Q(x)]^{+}-[F(x)-Q(x)]^{-}=2 h\left[\rho^{\prime}(x)-\rho_{1}(x)\right], x \in L$

[^0]where
$$
g_{1}(x)=\left[F_{2}{ }^{\prime}(x)+Q_{2}{ }^{\prime}(x)\right] \varepsilon_{1}, \quad \varepsilon_{1}=\frac{\min \left(k_{0}, k\right)}{k_{0}}, \quad \rho_{1}(x)=\left[F_{2}{ }^{\prime}(x)-Q_{2}{ }^{\prime}(x)\right] i \varepsilon_{2}, \quad \varepsilon_{2}=\frac{\min \left(k_{0}, k\right)}{k}
$$
$F_{2}(x)$ and $Q_{2}(x)$ are known functions which yield a solution to the problem of heat conduction for the same plate without inclusion.

Solving the problem of linear coupling (2.4), we find

$$
\begin{align*}
& F(z)=\frac{h}{2 \pi}\left[\frac{k_{0}}{\kappa} \int_{-a}^{a} \frac{\left[g^{\prime}(x)-g_{1}(x)\right] d x}{x-z}-i \int_{-a}^{a} \frac{\left[\rho^{\prime}(x)-\rho_{1}(x)\right] d x}{x-z}\right]+F_{2}(z) \tag{2.5}\\
& Q(z)=\frac{h}{2 \pi}\left[\frac{k_{0}}{k} \int_{-a}^{a} \frac{\left[g^{\prime}(x)-g_{1}(x)\right] d x}{x-z}+i \int_{-a}^{a} \frac{\left[\rho^{\prime}(x)-\rho_{1}(x)\right] d x}{x-z}\right]+Q_{2}(z)
\end{align*}
$$

Substituting the expressions for the functions $F(z)$ and $Q(z)$ given in (2.5) into (2.3), we obtain two singular, integrodifferential Prandtl-type equations for determining the unknown functions $g(x)$ and $\rho(x)$

$$
\begin{align*}
& g(x)-\frac{h k_{0}}{\pi k} \int_{-a}^{a} \frac{\left[g^{\prime}(t)-g_{1}(t)\right] d t}{t-x}=F_{2}(x)+Q_{2}(x), \quad x \in L \tag{2.6}\\
& \frac{k_{0}}{k} \rho(x)-\frac{h}{\pi} \int_{-a}^{a} \frac{\left[\rho^{\prime}(t)-\rho_{1}(t)\right] d t}{t-x}=i\left[F_{2}(x)-Q_{2}(x)\right], \quad x \in L
\end{align*}
$$

We seek the solution of (2.6) in the form

$$
\begin{equation*}
g(a x)=g_{2}(a x)-\sqrt{1-x^{2}} \sum_{m=1}^{\infty} \frac{1}{m} X_{m} U_{m-1}(x), \quad \rho(a x)=\rho_{2}(a x)-\sqrt{1-x^{2}} \sum_{m=1}^{\infty} \frac{1}{m} Y_{m} U_{m-1}(x), \quad|x| \leqslant 1 \tag{2.7}
\end{equation*}
$$

$$
g_{2}(x)=\left[F_{2}(x)+Q_{2}(x)\right] \varepsilon_{1}, \quad \rho_{2}(x)=\left[F_{2}(x)-Q_{2}(x)\right] i \varepsilon_{2}
$$

where X_{m} and Y_{m} are unknown coefficients and $U_{m}(x)$ are Chebyshev polynomials of second kind. From (2.6) and (2.7) we follow /2/ to arrive at two infinite, quasiregular systems of linear algebraic equations for determining the coefficients X_{m} and Y_{m} of the expansions

$$
\begin{align*}
& \sum_{m=1}^{\infty} R(m, n) X_{m}+\frac{\pi h k_{0}}{2 a k} X_{n}=\left(\varepsilon_{1}-1\right) D_{n}^{+}, \quad \frac{k_{0}}{k} \sum_{m=1}^{\infty} R(m, n) Y_{m}+\frac{\pi h}{2 a} Y_{n}=i\left(\varepsilon_{2}-1\right) D_{n}^{-} \quad(n=1,2, \ldots) \tag{2.8}\\
& D_{n} \pm=\int_{-1}^{1}\left[F_{2}(a x) \pm Q_{2}(a x)\right] \sqrt{1-x^{2}} U_{n-1}(x) d x
\end{align*}
$$

$$
R(m, n)=\left\{\begin{array}{cc}
0, \quad \text { if }(m+n) \text { is an odd number } \\
-\frac{4 n}{(m+n+1)(m+n-1)(m-n-1)(m-n+1)}, \\
\text { if }(m+n) \text { is an even number }
\end{array}\right.
$$

Making use of the formulas (2.7), we write (2.5) in the form

$$
\begin{equation*}
F(z)=\frac{h}{2 a} \sum_{m=1}^{\infty}\left[\frac{k_{0}}{k} X_{m}-i Y_{m}\right] L_{m}\left(\frac{z}{a}\right)+F_{2}(z), \quad Q(z)=\frac{h}{2 a} \sum_{m=1}^{\circ}\left[\frac{k_{0}}{k} X_{m}+i Y_{m}\right] L_{m}\left(\frac{z}{a}\right)+Q_{2}(z) \tag{2.9}
\end{equation*}
$$

$$
L_{m}(z)=U_{m-1}(z)-T_{m}(z) / \sqrt{z^{2}-1}
$$

where $\left(T_{m}(z)\right.$ are Chebyshev polynomials of the first kind.
We note that by setting $k_{0}=0$ in (2.8) and (2.9), we obtain a solution of the problem of heat conduction for a plate with a thermally insulated crack, while putting $k_{0}=k$ yields a solution of the problem of heat conduction for a plate without an inclusion.
3. Problem of thermoelasticity. According to $/ 1 /$, we can describe the stressstrain state of an isotropic plate by the following formulas:

$$
\begin{equation*}
\sigma_{x}+\sigma_{y}-2\left\lfloor\Phi(z)+\overline{\Phi(z)}, \quad \sigma_{y}-i \tau_{x y}-\Phi(z)+\Omega(\bar{z})+(z-\bar{z}) \overline{\Phi^{\prime}(z)}\right. \tag{3.1}
\end{equation*}
$$

$$
2 \mu \frac{\partial}{\partial x}(u+i v)=x \Phi(z)-\Omega(\bar{z})-(z-\bar{z}) \overline{\Phi(z)}+\beta \Psi_{1}(z), \quad \Psi_{1}(z)=F_{1}(z)+Q_{1}(z)
$$

Here $\beta=2 \alpha E$ for the plane deformations and $\beta=2 \alpha E /(1+v)$ for the plane state of stress, α is the temperature coefficient of linear expansion, E is the Young's modulus and v is the Poisson's ratio.

Using the relations (3.1) and conditions (1.1), and following the solution of the problem of heat conduction, we obtain the following boundary value problems for determining the piecewise holomorphic functions $\Phi(z)$ and $\Omega(z)$ with the line of discontinuity L :

$$
\begin{align*}
& {[\Phi(x)-\Omega(x)]^{+}-[\Phi(x)-\Omega(x)]^{-}=2 i h K^{\prime}(x), \quad x \in L} \tag{3.2}\\
& {[x \Phi(x)+\Omega(x)]^{+}-[x \Phi(x)+\Omega(x)]^{-}+\beta\left(\Psi_{1}^{+}(x)-\Psi_{1}^{-}(x)\right)=\frac{2 i h \mu}{\mu_{0}}\left[M^{\prime}(x)-M_{1}(x)+\mu_{0} \Psi_{0}^{\prime}(x)\right], \quad x \in L} \\
& \left.[\Phi(x)+\Omega(x)]^{+}+[\Phi(x)+\Omega(x)]^{-}=\frac{2}{1+x_{0}}\left[1-x_{0}\right) K(x)+2 M(x)+2 \overline{K(x)}+2 \overline{M(x)}\right], x \in L \tag{3.3}\\
& x\left[\Phi^{+}(x)+\Phi^{-}(x)\right]-\left[\Omega^{+}(x)+\Omega^{-}(x)\right]+\beta\left(\Psi_{1}^{+}(x)+\Psi_{1}^{-}(x)\right)= \\
& \quad \frac{2 \mu}{\mu_{0}\left(1+x_{0}\right)}\left[2 x_{0} K(x)+\left(x_{0}-1\right) M(x)-2 \overline{K(x)}-2 \overline{M(x)}\right]+\frac{2 \mu \beta_{0}}{\mu_{0}} \Psi_{0}^{\prime}(x), \quad x \in L
\end{align*}
$$

where

$$
\begin{equation*}
M_{1}(x)=\beta \varepsilon_{3} \Psi_{2}^{\prime}(x), \quad \varepsilon_{3}=\frac{\min \left(\mu_{0}, \mu\right)}{\mu}, \quad \Psi_{2}(z)=\int F_{2}(z) d z+T_{\infty} \tag{3.4}
\end{equation*}
$$

$$
\Psi_{0}(x)=\frac{1}{4} \sqrt{a^{2}-x^{2}} \sum_{m=1}^{\infty} \frac{1}{m}\left(X_{m}-i Y_{m}\right)\left[\frac{1}{(m-1)} U_{m-2}\left(\frac{x}{a}\right)-\frac{1}{(m+1)} U_{m}\left(\frac{x}{a}\right)\right]+\rho_{3}(x)+T_{0}
$$

$$
\Psi_{1}(z)=\frac{h}{2 a} \sum_{m=1} \frac{1}{m}\left(i Y_{m}-\frac{k_{0}}{k} X_{m}\right) \sqrt{z^{2}-a^{2}} L_{m}\left(\frac{z}{a}\right)+\Psi_{2}^{\prime}(z), \quad \rho_{3}^{\prime}(x)=\frac{1}{2}\left[g_{2}(x)-i \rho_{2}(x)\right]
$$

Here T_{0} and T_{∞} are the temperatures in the inclusion and at infinity, respectively, and $K(x), \quad M(x)$ are unknown functions.

Solving the problem of linear conjugation (3.2), we obtain

$$
\begin{align*}
& \Phi(z)=\frac{1}{1+x}\left\{\frac{h}{\pi}\left[I_{K}(z)+\frac{\mu}{\mu_{0}} I_{M}(z)\right]-\frac{\mu \beta}{2 a} \sum_{m=1}^{\infty} \frac{1}{m}\left(a_{1} X_{m}+i a_{2} Y_{m}\right) \sqrt{z^{2}-a^{2}} L_{m}\left(\frac{z}{a}\right)\right\} \tag{3.5}\\
& \Omega(z)=\frac{1}{1+x}\left\{\frac{h}{\pi}\left[-x I_{K}(z)+\frac{\mu}{1_{0}} I_{M}(z)\right]-\frac{h \beta}{2 a} \sum_{m=1}^{\infty} \frac{1}{m}\left(a_{1} X_{m}+i a_{2} Y_{m}\right) \sqrt{z^{2}-a^{2}} L_{m}\left(\frac{z}{a}\right)\right\} \\
& I_{K}(z)=\int_{-a}^{a} \frac{K^{\prime}(t) d t}{t-z}, \quad I_{M}(z)=\int_{-a}^{a} \frac{\left[M^{\prime}(t)-B(t)\right] d t}{t-z}, \quad B(t)=M_{1}(t)-\beta_{0} \rho_{3}^{\prime}(t) \\
& a_{1}=\frac{\mu \beta_{0}}{\mu_{0} \beta}-\frac{k_{0}}{k}, \quad a_{2}=1-\frac{\mu \beta_{0}}{\mu_{0} \beta}
\end{align*}
$$

Substituting the expressions for the functions $\Phi(z)$ and $\Omega(z)$ (3.5) into the conditions (3.3), we obtain the following system of integrodifferential equations for determining the unknown functions $K(x)$ and $M(x)$:

$$
\begin{align*}
& \frac{1}{1+x_{0}}\left[\left(1-x_{0}\right) K(x)+2 M(x)+2 \overline{K(x)}+2 \overline{M(x)}\right]-\frac{h(1-x)}{\pi(1+x)} I_{K}(x)- \tag{3,6}\\
& \frac{2 h \mu}{\pi \mu_{0}(1+x)} I_{M}(x)=\frac{h \beta}{(1+x)} \sum_{m=1}^{\infty} \frac{1}{m}\left(a_{1} X_{m}+i a_{2} Y_{m}\right) T_{m}\left(\frac{x}{a}\right) \\
& \frac{\mu}{\mu_{0}\left(1+x_{0}\right)}\left[2 x_{0} K(x)+\left(x_{0}-1\right) M(x)-2 \overline{K(x)}-2 \overline{M(x)]}-\frac{2 h x}{\pi(1+x)} I_{K}(x)-\frac{h \mu(x-1)}{\pi \mu_{0}(1+x)} I_{M}(x)=\right. \\
& \frac{h \beta}{2(1+x)} \sum_{m=1}^{\infty} \frac{1}{m}\left(b_{1} X_{m}-i b_{2} Y_{m}\right) T_{m}\left(\frac{x}{a}\right)-\frac{\mu \beta_{0}}{\mu_{0}} \Psi_{0}(x)+\beta \Psi_{2}(x), \quad b_{1}=\frac{\mu \beta_{0}(x-1)}{\mu_{0} \beta}+2 \frac{k_{0}}{k}, \quad b_{2}=\frac{\mu \beta_{n}(x-1)}{\mu_{0} \beta}+2
\end{align*}
$$

We seek the solution of the system (3.6) in the form

$$
\begin{align*}
& K(a x)=K_{0}-\sqrt{1-x^{2}} \sum_{m=1}^{\infty} \frac{1}{m} Z_{m} U_{m-1}(x), \quad M(a x)=M_{0}+B_{2}(a x)-\sqrt{1-x^{2}} \sum_{m=1}^{\infty} \frac{1}{m} S_{m} U_{m-1}(x) \tag{3.7}\\
& \left(B_{2}{ }^{\prime}(x)=B(x)\right)
\end{align*}
$$

where $K_{0}, M_{0}, Z_{m}, S_{m}$ are unknown coefficients.
Performing the necessary manipulations, we arrive at an infinite system of linear algebraic equations for determining the coefficients Z_{m} and S_{m} of the expansions

$$
\begin{align*}
& \frac{2}{1+x_{0}} \sum_{m=1}^{\infty} R(m, n)\left[\left(1-x_{0}\right) Z_{m}+2 S_{m}+2 \bar{Z}_{m}+2 \bar{S}_{m}\right]+C_{1} Z_{n}+C_{2} S_{n}=A_{n} \tag{3.8}\\
& \frac{2 \mu}{\mu_{0}\left(1+x_{0}\right)} \sum_{m=1}^{\infty} R(m, n)\left[2 x_{0} Z_{m}+\left(x_{0}-1\right) S_{m}-2 \bar{Z}_{m}-2 \bar{S}_{m}\right]+C_{3} Z_{n}+C_{4} S_{n}=B_{n}
\end{align*}
$$

where

$$
\begin{aligned}
& H(m, n)=\left\{\begin{array}{cc}
0, & n \neq m+1, n \neq m-1 \\
\pi / 4, & n=m+1 \\
-\pi / 4, & n=m-1
\end{array}\right. \\
& A_{n}=2 \int_{-1}^{1}\left\{\frac{2}{\left(1+x_{0}\right)}\left[B_{2}(a x)+\overline{B_{2}(a x)}\right]+A_{0}\right\} \sqrt{1-x^{2}} U_{n-1}(x) d x-\frac{2 h \beta}{(1+x)} \sum_{m=1}^{\infty} \frac{1}{m}\left(a_{1} X_{m}+i a_{2} Y_{m}\right) H(m, n) \\
& B_{n}=2 \int_{-1}^{1}\left\{\frac{\mu}{\mu_{0}\left(1+x_{0}\right)}\left[\left(x_{0}-1\right) B_{2}(a x)-2 \overline{B_{2}(a x)}\right]-\beta \Psi_{2}(a x)+B_{0}+\frac{\mu \beta_{0}}{\mu_{0}}\left(\rho_{3}(a x)+T_{0}\right)\right\} \sqrt{1-x^{2}} U_{n-1}(x) d x- \\
& \frac{n \beta}{(1+x)} \sum_{m=1}^{\infty} \frac{1}{m}\left(b_{1} X_{m}-i b_{2} Y_{m}\right) H(m, n)+\frac{\mu \beta_{0} a}{2 \mu_{0}} \sum_{m=1}^{\infty} \frac{1}{m}\left(X_{m}-i Y_{m}\right)[R(m-1, n)-R(m+1, n)], n \geqslant 1 \\
& C_{1}=\frac{\pi h(1-x)}{a(1+x)}, \quad C_{2}=\frac{2 \pi h \mu}{a \mu_{0}(1+x)}, \quad C_{3}=\frac{2 \pi h x}{a(1+x)}, \quad C_{4}=\frac{\pi h \mu(x-1)}{a \mu_{0}(1+x)} \\
& A_{0}=\frac{1}{1+x_{0}}\left[\left(1-x_{0}\right) K_{0}+2 M_{0}+2 \bar{K}_{0}+2 \bar{M}_{0}\right], \quad B_{0}=\frac{\mu}{\mu_{0}\left(1+x_{0}\right)}\left[2 x_{0} K_{0}+\left(x_{0}-1\right) M_{0}-2 \bar{K}_{0}-2 \bar{M}_{0}\right]
\end{aligned}
$$

Formulas (3.5) with (3.7) taken into account, yield

$$
\begin{align*}
& \Phi(z)=\frac{1}{(1+x)}\left\{\frac{h}{a} \sum_{m=1}^{\infty}\left(Z_{m}+\frac{\mu}{\mu_{0}} S_{m}\right) L_{m}\left(\frac{z}{a}\right)-\frac{h \beta}{2 a} \sum_{m=1}^{\infty} \frac{1}{m}\left(a_{1} X_{m}+i a_{2} Y_{m}\right) \sqrt{z^{2}-a^{2}} L_{m}\left(\frac{z}{a}\right)\right\} \tag{3.10}\\
& \Omega(z)=\frac{1}{(1+x)}\left\{\frac{h}{a} \sum_{m=1}^{\infty}\left(-x Z_{m}+\frac{\mu}{\mu_{0}} S_{m}\right) L_{m}\left(\frac{z}{a}\right)-\frac{h \beta}{2 a} \sum_{m=1}^{\infty} \frac{1}{m}\left(a_{1} X_{m}+i a_{2} Y_{m}\right) \sqrt{z^{2}-a^{2}} L_{m}\left(\frac{z}{a}\right)\right\}
\end{align*}
$$

Fig. 2
A_{0} and ReB_{0} are $A_{0}=\operatorname{Re} B_{0}=0$

Fig. 3

The quantity $\operatorname{Im} B_{0}$ is found from the condition that the moment of all forces applied to the inclusion is equal to zero (Λ is a closed contour encircling L)

$$
\begin{equation*}
\operatorname{Re} \int_{\Lambda}[\bar{\Omega}(z)+\Phi(z)] z \mathrm{~d} z=0 \tag{3.11}
\end{equation*}
$$

Using the results of $/ 2,3 /$, we can show that the system of linear algebraic equations (3.8) is quasiregulax.

In analogy with the theory of cracks /4/, we can represent the state of stress in the neighborhood of the end of the inclusion in the following form, using the polar $r, \theta-c o o r d-$ inate system (Fig.1):

$$
\begin{aligned}
& \left\|\begin{array}{c}
\sigma_{r} \\
\sigma_{\theta} \\
\tau_{r \theta}
\end{array}\right\|=\frac{1}{4 \sqrt{2 r}}\left[N_{1}(-1) K_{1}+N_{2}(3) K_{2}+N_{1}(1+2 x) K_{3}+N_{2}(1-2 x) K_{4}\right]+O(1) \\
& N_{1}(\lambda)=\left\|\begin{array}{c}
5 \cos ^{1} / 2 \theta+\lambda \cos ^{3} / 2 \theta \\
3 \cos ^{1} / 2 \theta-\lambda \cos ^{3} / 2 \theta \\
\sin ^{1} / 2 \theta-\lambda \sin ^{3} / 2 \theta
\end{array}\right\|, N_{2}(\lambda)=\left\|\begin{array}{c}
-5 \sin ^{1} / 2 \theta+\lambda \sin ^{3} / 2 \theta \\
-3 \sin ^{1} / 2 \theta-\lambda \sin ^{3} / 2 \theta \\
\cos 1 / 2 \theta+\lambda \cos ^{3} / 2 \theta
\end{array}\right\|
\end{aligned}
$$

Here $K_{i}(i=1,2,3,4)$ are the stress intensity coefficients obtained from the formulas $(j=1$ for the point $a, j=2$ for the point $-a$)

$$
\begin{equation*}
K_{1}^{j}-i K_{2}^{j}=-\frac{2 h \mu}{\mu_{0}\left(1+x_{0} \sqrt{a}\right.} \sum_{m=1}^{\infty}(-1)^{(m+1)(2-j)} S_{m}, \quad K_{3}^{j}-i K_{4}^{j}=-\frac{2 h}{(1+x) \sqrt{a}} \sum_{m=1}^{\infty}(-1)^{(m+1)(2-j)} Z_{m} \tag{3.13}
\end{equation*}
$$

In conclusion we note, that by assuming in the formulas quoted that $k_{0}=k, \mu_{0}=\mu, x=x_{0}$,
$\beta=\beta_{0}$, we obtain a solution of the problem for a plate without an inclusion. On the other hand, passing in the formulas (3.5), (3.6) or (3.8), (3.10) to the limit as $\mu_{0} \rightarrow 0\left(k_{0}=0\right)$ or as $\quad \mu_{0} \rightarrow \infty\left(k_{0}=0\right)$, respectively, where in the second case the condition $(\partial v / \partial x-\partial u / \partial y)_{0}=0$
must also hold, we obtain a solution of the problem of thermoclasticity for a deformable inclusion (a cut) and for a perfectly rigid inclusion. In the particular case when the thermal flux is given at infinity, we obtain the results already given in $/ 5,6 /$.
4. Results of the numerical analysis. Figs.2-4 depict the results of numerical analysis of the problem for the case of the plate acted upon by a heat flux (q_{∞} is the flux intensity at infinity). Computations were carried out for the following values of the parameters: $v=v_{0}=1 / 3, \alpha_{0} / \alpha=0, k_{0} / k=0, a / h=10, T_{0}=T_{\infty}=0$.

Figure 2 shows the relation between the stress intensity coefficients $\quad K_{i}^{\prime}=K_{i} k /\left(\beta a^{3 / 2} q_{v}\right)$ at the point $x=a$ and relative rigidity of the inclusion $d=\mu_{0} / \mu$. Curves 1,3 depict, respectively, K_{1}^{\prime} and K_{3}^{\prime} for $\varphi=0$, and curves 2,4 depict K_{2}^{\prime} and K_{4}^{\prime} for $\varphi=\pi / 2$. In the first case we have $(\varphi=0) K_{2}{ }^{\prime}=K_{4}{ }^{\prime}=0$, and in the second case we have $(\varphi=\pi / 2)-K_{1}{ }^{\prime}=K_{3}{ }^{\prime} \cdots 0$. Curves $5-8$ correspond to $K_{l}^{\prime}(i=1,2,3,4)$ for $\varphi=\pi / 6$.

Figure 3 depicts the dependence of $K_{i}^{\prime}(i=1,2,3,4)$ on the angle φ at the same point. Curves $1-1$ correspond to $K_{i}^{\prime}(i=1,2,3,4)$ for $d=5$, and curves $5-8$ for $d=0.2$.

Figure 4 shows the dependence of $K_{i}^{\prime}=K_{i} /(\sqrt{a} \beta)$ on the relative rigidity d of the inclusion at $T_{0}=T_{\infty}=5$ (the corresponding curve for $T_{0}=T_{\infty}=-5$ is symmetrical to the previous curve about the abscissa). In this case we have $K_{2}{ }^{\prime}=K_{4}{ }^{\prime}=0, K_{1}^{\prime} \approx 0$. The computations were carried out for $q_{\infty}=0, v=v_{0}-1 / 3, \quad \alpha_{0} / \alpha=0, \quad a / h=10$.

REFERENCES

1. PRUSOV, I. A. Certain Problems of Thermoelasticity. Minsk, Izd-vo Belorussk. Univ. 1972.
2. MORAR' G. A. and POPOV, G. Ia. On the contact problem for a half-plane with finite elastic reinforcement. PMM Vol.34, No.3, 1970.
3. SULIM, G. T. Regularity of certain systems of linear algebraic equations. Visn. L'vov. Univ. Ser. mekhan.-matem. No.10, 1975.
4. PANASIUK, V. V., SAVRUK, M. P. and DATSISHIN, A. P. Distribution of Stresses Around Cracks in Plates and Shells. Kiev, "Naukova Dumka", 1976.
5. SEKINE, H. Thermal stress problem for a ribbon-like inclusion. Letters Appl. Engng. Sci. Vol.5, No.1, 1977.
6. SEKINE, H. Thermal stress near tips of an insulated line crack in a semi-infinite medium under uniform heat flow. Engng. Fracture Mech., Vol.9, No. 2, 1977.

[^0]: *Prik1.Matem.Mekhan. ,44,No.2,338-345,1980

