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A PLATE CONTAINING A 

D. V. GRILITSKII, M. S. DRAGAN and V. K. OPANASOVICH 

A planeproblemof heatconductivity andthermoelasticityis considered for a plate con- 
taining a rectilinear, thin-walled elastic inclusion of finite length. The problem 
is reduced to a system of two singular, integrodifferential Prandtl-type equations, 
which are solved using the method of orthogonal polynomials. A numerical analysis 
of the solution is given. 

1. Formulation of the problem. We consider an isotropic plate containing a foreign, 
thin-walled rectilinear inclusion of length 2a, thickness 2h, acted upon by the thermal 
parameters only (heat flux at infinity, concentrated heat sources). It is assumed that the 
side surfaces of the plate are thermally insulated, and that perfect thermal contact and force 
coupling exist between the edges of the inclusion and the surrounding material. We require 
to determine and study the effect of the inclusion on the magnitude and character of the dis- 
tribution of the temperature field and thermoelastic state in the plate. 

To solve the problem, we shall employ a Cartesian &y-coordinate system the axes of 
which are directed along the axes of the inclusion (Fig.1). We denote the length of the 

L, and the quantities referring to the inclusion 
by a subscript zero. //'i" 
inclusion by 

The plus and minus indices denote the bound- 
ary values of the functions at the upper and lower edges of the 
inclusion, respectively. 

The conditions of the force coupling and thermal contact be- 
tween the inclusion and the surrounding material have the form 

Fig.1 

(a"- izXv)&= (IS"-- in&, (U + i~)~*=(u+ iv)* on L 

(T+ iq)$=(T+ in)*, ko$(T+ iq)o*=k-&(T+ iq)* on L 

(1.1) 

(1.2) 

where q is an auxilliary harmonic function /l/ and k,, k are the heat conductivity coefficients 
of the inclusion and the plate materials, respectively. 

2. Problem of heat conduction. According to /l/, the temperature field in a homo- 
geneous isotropic plate can be found using the formula 

F, (2) + 91 (a) = T + il. F(z)+Q(z)=~((T+iq), F(z)-@Q(z)=- ++w (2.1) 

(F (4 = PI’ (4, Q (4 2 91’ (4) 

where F,(z) and Q,(z) are piecewise holomorphic functions. Since we consider a thin-walled 
inclusion, we can neglect the quantities which are very small compared with h, and use(2.1) 
to write 

&(T + irl)o' + 2 (T + itl)O= 2g (5) IEL, &(cT + iT&+ - -&T + il))O = 2hP'("), X E L (2.2) 

~(I.+irl)a++~(T+itl)o=2P(I). .rEL* $(T + in)O+ - -&T + ill)o- = - B&'(s), .z E I, 

where g(z) and p(z) are functions to be determined. 
Satisfying the conditions (1.2) with help of the relations (2.1) and taking (2.2) into 

account, we obtain the following boundary value problems for determining the piecewise holo- 
morphic functions P(z) and Q(z) with the line of discontinuity L: 

IF (5) + Q (s)l+ + w (5) + Q @)I- == 2g (z), z E I. I [F(x)- Q (Lx)]+ + [F(x)- Q (CT)]- = - 2i +(5), sE I, (2.3) 

IF(s) + Q @)I'- IF(s) + Q @)I- = 24w(4 - g, (.r)l, ZEL (2.4) 

IF (5) - 0 (s)l+ - IF (I) - Q @)I- m= 2h [p' (CC)- PI @)I, SE L 

~-.-. 
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where 

g1(4 = IFa (4 + Qa (41 El, 
min (ko, k) 

p1(4 = IF* 
, 

e,=-, (4 - Qs’ (41 iez, 
min (4, k) 

ko 
ee=T 

F, (4 and Qa (4 are known functions which yield a solution to the problem of heat conduction 
for the same plate without inclusion. 

Solving the problem of linear coupling (2.4), we find 

(2.5) 

Substituting the expressions for the functions F(z) and o(z) given in (2.5) into (2.3), 
we obtain two singular, integrodifferential Prandtl-type equations for determining the un- 
known functions g(s) and p(s) 

g(s) -$ j 
h?' (Q -g, WI dt 

t-z = Fa (2) + Qa (z), 5 E L 
--a 

+ p (x) _ + i 1~' (0 ;~z(t)l dt =~V,(~-QQ,(Z)], ZEL 
-0 

We seek the solution of (2.6) in the form 

g(ar)= g,(ax)- 1/1 -r* z +L-,(I) 9 p(az)=p2(ar)-l/l--2’~~Y,U,,(r), Irl<i 
m=1 m-1 

a (4 = IFz (4 + Qt (41 E,, pe (4 = iF, (4 - Qa (41 ie, 

(2.6) 

(2.7) 

where X, and Y,are unknown coefficients and U,(x) are Chebyshev polynomials of secondkind. 
From (2.6) and (2.7) we follow /2/ to arrive at two infinite , quasiregular systems of linear 
algebraic equations for determining the coefficients X, and Y, of the expansions 

m 00 

Is R(m,n)X,+n~X,=(El--)D,+, +- Iz R(m,n)Y,+~Y,=i(e,-_)D,_ (n=1,2,. ..) (2.8) 
m=1 VI-1 

L 
0, if (mfn) is an odd number 

R(m,n)= - 
4n 

(m+n+l)(m+n-_)(m-----)(m--++) ’ 
if (m+n) is an even number 

Making use of the formulas (2.7), we write (2.5) in the form 

F(z)=& -j [p x,-- iY+(+)+Fdz)~ Q(a)=$f,[~X,fiY,]~,(~)+ Q~(z) (2sg) 
m-1 m==l 

where (I', (z) are Chebyshev polynomials of the first kind. 
We note that by setting k, = 0 in (2.8) and (2.9), we obtain a solution of the problem 

of heat conduction for a plate with a thermally insulated crack, while putting k, = k yields 
a solution of the problem of heat conduction for a plate without an inclusion. 

3. Problem of thermoelasticity. According to /l/, we can describe the stress- 
strain state of an isotropic plate by the following formulas: 

IJ, + crI - 2 IQ (z) + @ (z)l, ay - ir,, - (I, (z) + Q (Z) + (z - Z) a,' (z) (3.1) 
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2P & + iv)= x0 (z)- Q(Z) - (z - Z) w + fW,(z), qr', (2) F, (z) -1. VI (2) 

Here p = 2aE for the plane deformations and fi = &E/(1 +Y) for the plane state of stress, 
a is the temperature coefficient of linear expansion, E is the Young's modulus and Y is 
the Poisson's ratio. 

Using the relations (3.1) and conditions (l.l), and following the solution of the problem 
of heat conduction, we obtain the following boundary value problems for determining the piece- 
wise holomorphic functions m(z) and Q (z) with the line of discontinuity L: 

[CD (I) - Q (x)1+ - IQ, (z) - $2 @)I- = 2ihK’ (x), z E L (3.2) 

[x0 (5) + n ("11' - 1x0 (Z) + Q(z)]- + /?I (Y,’ (.Z) - yP1- (2)) = J$ W’ (z) - Ml (4 + WY, (2)1? z E L 

[@ (4 + Q (41’ + L@ (4 + Q (x)1- = & [(I - xo) K (4 + 244 (4 + 2K(2) + 2M (x)1, z E L (3.3) 

x IQ’ (4 + @- (41 - Ifi+ (4 + a- @)I + B (Y,+ (x) + Y1- (Z)) = 
- - 

&[2@ (4 + (xo - 1) ~4 (I) - 2K (x) - 2M (s)] + ?$E ye(x), XEL 

where 

MI (2) = @,'r,'@), Es= min(P,.P) 
* ’ Y,(z) = 1 F,(z) dz + T, (3.4) 

Yo(x)=+-/a2 p(xm-iYm)[&+(~)- &ylJ($)]+p:l(s!+To 
m=1 

Y1 (2)’ $- c + (iYm - p xm) f/,z ZJ, (+) + Y,(z), Pa’ (4 = -+ lg.2 (4 - iP2 (x)1 
m=1 

Here T, and T, are the temperatures in the inclusion and at infinity, respectively, and 

K W M (z) are unknown functions. 
Solving the problem of linear conjugation (3.2), we obtain 

al&f!L~ 
14 k ’ 

n,=l-3 

Substituting the expressions for the functions m(z) and Q(z) (3.5) into the conditions (3.3), 
we obtain the following system of integrodifferential equations for determining the unknown 
functions K(z) and M(r): 

+% [(I - xo) K (4 + 2M (4 + 2~ (4 + 24~’ WI- $+$ IK (5) - 
(3.6) 

We seek the solution of the system (3.6) in the form 
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(Bi (4 = B (4) 

where K,, MO, Z,, S, are unknown coefficients. 
Performing the necessary manipulations, we arrive at an infinite system of linear alge- 

braic equations for determining the coefficients Z, and S, of the expansions 

m 
?. 

-~R(m,n)~(~-~~)Zm+2s,+2~~+2~~l+C~Zn+c~s~=A, 
(3.8) 

1 + x0 
rn=l 

2P m 
PO Y+%) lz R (m 4 F%Zm + (xo - IL% - 22, - ZS,,,] + CZ,, + CJ, = B, 

m=1 
where 

0, n#m+l, n#m-1 

H (m, n) = n1fk n=m+l 

--nl% n=m--l 

(3.9) 

A.=257& - - [B, (LIT) + & (ax)] + A,,} V/1 - xa U,,(s) dz - -%- 2 + (d&,, + W’,,J H (m 4 
(1 +x) -1 rn=I 

B,= 2 f [g&q [(x0 - 1) Ba (a) - 2& (@I-- B’rs (a.~) + Bo + $‘(I)J (a~) + T,)) 1/l - z”u,,_~ (z) ds - 
-1 

(1 :BX, - 1 
- ~,(bIX,--ibrY,)H(m,n)+ et ’ ,(X,-iY,,,)[R(m-l,n)-R(m+l,n)], n>l 

nL=l nl=1 

c = Jrhu--x) cfd= h4’ 
1 a’ wo (1 + w ’ c3=a$$j, c4=Jw~--i) 

WI o+ X) 

Ao= &, I(1 - xa) Ko + 2Mo + 2G + 25&l t Bo = ho $+ xgJ [2x&o + (xo - 1) Mo - 2Ro - 2#01 

Formulas (3.5) with (3.7) taken into account, yield 

we assume that the constants n A, and ReB, are A,, = ReB, = 0 

z 
K' 

0 La d 

7L7-4 IO0 ?04 
Fig.4 

Fig.2 Fig.3 
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The quantity ImB, is found from the condition that the moment of all forces applied to the 
inclusion is equal to zero (A is a closed contour encircling L) 

Re S[a(z)+ D (z)]zdz =O. 
n 

Using the results of /2,3/, we can show that the system of 
(3.8) is quasiregular. 

In analogy with the theory of cracks /4/, we can represent 
neighborhood of the end of the inclusion in the following form, 
inate system (Fig.1): 

(3.11) 

linear algebraic equations 

the state of stress in the 
using the polar r,6-coord- 

or 

I I G3 =~[N,(--)Kl+N.(3)Kn+N1(1+2x)K,+ ~+'1(1--4&1+@1) 
(3.12) 

rre 

5cos'/J3 + hcos3/,8 

Nl(k) = 3c0s~/~e - hcosShe , N,(h) = - 3 sin l/,e - h sin alze I sin ll,e - h sin 3/ze I I 

- 5 sin 1/28 + h sin she 

cos Ihe + h cos yae I 

Here K,(i = 1, 2, 3, 4) are the stress intensity coefficients obtained from the formulas (j = 1 
for the point a, j = 2 for the point -a) 

m 

K,j - iK.j_= - (- l)(m+l)(z-j)&,, K.J _ iKJ= _ 2h z (_ f)W+l)(z-j)& (3.13) 
(1 +x)1/O m=l 

In conclusion we note, that by assuming in the formulas quoted that k, = k, cl0 = P,X =x0, 

B = l&r we obtain a solution of the problem for a plate without an inclusion. On the other 
hand, passing in the formulas (3.5), (3.6) or (3.8), (3.10) to the limit as p0 + 0 (k, = 0) 
or as pm-f 00 (k, = 0), respectively, where in the second case the condition 

(avlax-au/ay)o =o 

must also hold, we obtain a solution of the problem of thermoelasticity for a deformable in- 
clusion ( a cut) and for a perfectly rigid inclusion. In the particular case when the therm- 
al flux is given at infinity, we obtain the results already given in /5,6/. 

4. Results of the numerical analysis. Figs.2-4 depict the results of numerical 
analysis of the problem for the case of the plate acted upon by a heat flux (q, is the flux 
intensity at infinity). Computations were carried out for the following values of the para- 
meters: v= v0 = V3, a& = 0, k,ik = 0, aih = 10, T, = T, = 0. 

Figure 2 shows the relation between the stress intensity coefficients Ki' = Kik/(pa”:‘q,) at 

the point ~=a and relative rigidity of the inclusion d= pOip. Curves 1,3 depict, respect- 
ively, K; and K3’ for q=o, and curves 2,4 depict K,’ and K,’ for cp= ni2. In the 
first case we have ((P = 0) K,’ = K,’ = 0 , and in the second case we have (cp= II/Z)- A','- K,' 0. 
Curves 5-8 correspond to K1’ (i = 1, 2, 3, 4) for cp = n/6. 

Figure 3 depicts the dependence of K;(i = 1,2,3,4) on the angle cp at the same point. 
Curves 1-J correspond to Ki’(i=1,2,3,4) for d=5, and curves 5-8 for d=O.Z. 

Figure 4 shows the dependence of K<’ = Ki/(V/ap) on the relative rigidity d of the inclus- 
ion at T,= T_= 5 (the corresponding curve for T,= T_ = -5 is symmetrical to the previous 
curve about the abscissa). In this case we have K,’ = K,’ = 0, K,’ L 0. The computations were 
carried out for Q, = 0, v = v,, = 'I,, a,ia = 0, a/h = 10. 
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